α-Thioxothioamides: A Formal [4+1] Cycloaddition Reaction with Isocyanides and Diisocyanides and its Application to a New Straightforward Formation of **Extended Tetrathiafulvalenes**

Georges Morel,*[a] Evelyne Marchand,[a] Sourisak Sinbandhit,[b] and Roger Carlier[a]

Keywords: Oxidations / Cycloadditions / Sulfur heterocycles / Cyclic voltammetry / Isomerizations

A number of 2-(alkylimino) and 2-(arylimino)-1,3-dithioles (aza DTFs) bearing push-pull substituents have been prepared under mild conditions according to the title procedure. This novel strategy relies upon the fact that the use of conjugated diisocyanides allows an effective synthesis of new extended tetrathiafulvalenes (TTFs). The two dithiole moieties are linked by a conjugated framework that incorporates a phenyl, biphenyl or azobiphenyl group. High and low temperature measurements are required in order to understand the complex ¹H and ¹³C NMR spectra of the prepared mono-, bis- and tris-(1,3-dithiole) derivatives. Their electrochemical oxidations are also described.

Introduction

Since their early development, [1] the α -thioxothioamides 1 have been the subject of two recent preparative and mechanistic studies^[2] and the factors governing the facility and regioselectivity of their [4 + 2] cycloaddition reactions are now well established. To date, however, the conjugated heterodienes 1 have not been involved in a [4 + 1] cycloaddi-

As part of our continuing investigation of the chemistry of isocyanides and especially their formal [1 + 4] cycloadditions with conjugated aza, [3] diaza[4] and azathiadienes, [5] we became interested in examining the possibility of cyclizing the 1,4-dithiabutadiene system 1 under similar conditions. If successful, this reaction could provide a useful and straightforward route to 6-aza-1,3-dithiafulvenes (aza DTFs 2, Scheme 1). Moreover, suitable diisocyanides make the α -thioxothioamides 1 attractive starting materials for the design of new extended tetrathiafulvalene derivatives (TTFs) that bear push-pull substituents. A literature survey revealed that this type of procedure is confined to dimethyl tetrathiooxalate (Me₂C₂S₄) and standard monoisocyanides.[6]

The generation of functionalized 2-imino-1,3-dithioles (aza DTFs) has received recurrent attention in recent years owing to their obvious application as organic conducting materials.^[7,8] The main synthetic approaches are based on the condensation of 1,3-dithiolium cations with appropriate primary amines^[7–9] and the alkylation of dithiocarbamate salts by α -haloketones^[10] or counterparts.^[11] Another synthetic route involves treating 4,5-dihydro-5-thioxo-1,3,4-thi-

Campus de Beaulieu, F-35042 Rennes-Cedex, France

$$R^{1}$$
 S S^{1} NMe_{2} $+$ R^{2} $N=C$: $Me_{2}N^{2}$ $N-R^{2}$

1_	R ¹	2	R ¹	R ²
a	Ph	a	Ph	t-Bu
b	2-thienyl	b	Ph	i-Pr
c	4-CIC ₆ H ₄	c	2-thienyl	t-Bu
d	4-NO ₂ C ₆ H ₄	d	4-ClC ₆ H ₄	t-Bu
e	4-MeOC ₆ H ₄	e	$4-NO_2C_6H_4$	t-Bu
f	t-Bu	f	4-NO ₂ C ₆ H ₄	i-Pr
		g	4-NO ₂ C ₆ H ₄	CH ₂ Tos
		h	4-NO ₂ C ₆ H ₄	$2,6-Me_2C_6H_3$
		i	4-NO ₂ C ₆ H ₄	4-Me ₂ NC ₆ H ₄
		j	4-NO ₂ C ₆ H ₄	4-(4-NH ₂ C ₆ H ₄ CH ₂)C ₆ H ₄

Scheme 1. New route to aza DTFs

adiazoles^[12] or 3-thioxo-1,2,4-dithiazoles^[13] with a range of alkynes in a [3+2] cycloaddition process. Alternative methods used for the synthesis of these dithiole derivatives include the thermal decomposition of 1,3-dithiol-2-yl azides, [9a,14] the bromination of S-(pyrrolyl)dithiocarbamates,[15] the addition of thioacids to 2-chloro-3-thiocyanatopyridine^[16] and the reaction of a 2,2-dichloro-1,3-dithiole with primary amines.[17] In recent research in our laboratory, new examples have been developed in connection with their electrochemical redox^[8a] and non-linear optical properties[8a,11] as well as their potential as modified TTFs that include a p-diaminophenyl group in the conjugated spacer chain.[8b,8c]

The purpose of the present paper is to develop the scope of the novel method depicted in Scheme 1 and to report on its application to bis- and tris-(1,3-dithiole) derivatives through a one-step procedure. We have also considered the electrochemical oxidation behaviour of some of the aza DTFs 2 and extended TTFs. The formation and trapping of Me₂C₂S₄ were also briefly described to give a similar aza DTF.

Laboratoire de Synthèse et Electrosynthèse organiques, UMR 6510, Université de Rennes-I, Campus de Beaulieu, F-35042 Rennes-Cedex, France Fax: (internat.) +33-299/286-738 E-mail: Georges.Morel@univ-rennes1.fr

Centre Régional de Mesures Physiques de l'Ouest, Université

Results and Discussion

Reactions of α -Thioxothioamides 1 and $Me_2C_2S_4$ with Monoisocyanides

A variety of thioamides 1 and representative isocyanides have been used to afford the corresponding aza DTFs 2 in good to excellent yields (see Scheme 1 and Table 1). The reactions were performed in refluxing CH₃CN (method A) or CH₂Cl₂ at room temperature (method B). The reactions were clearly accelerated by the introduction of an electronwithdrawing group onto the aromatic substituent R¹. Thus, the component 1d underwent fast cycloadditions under surprisingly mild conditions with almost all of the isocyanides, whereas the reactivity of the dienes 1a,b was widely attenuated (for example, compare entries 1 and 3 with entry 5). Owing to the presence of an electron-releasing substituent R¹, the thioamides **1e.f** did not give any reaction with *tert*butyl isocyanide. The starting products 1 were recovered fully even after a prolonged heating at reflux in CH₃CN (ten days or more). Note that the C-4 of the molecules 2e-jbears a good donor group while C-5 bears an acceptor, such conjugated substituents giving rise to a push-pull effect of potential interest for nonlinear optical applications.[8a,11]

Table 1. Reactions of α -thioxothioamides 1 with monoisocyanides^[a]

Entry	Thioamide	Isocyanide (R ²)	Method	Time (h)	2-Iminodithiole ^[b] (yield %)
1	1a	tBu	A	48	2a (68)
2	1a	<i>i</i> Pr	A	72	2b (69)
3	1b	<i>t</i> Bu	A	120	2c (57)
4	1c	<i>t</i> Bu	A	15	2d (75)
5	1d	<i>t</i> Bu	A	0.5	2e (84)
6	1d	<i>t</i> Bu	В	2	2e (82)
7	1d	<i>i</i> Pr	В	5	2f (90)
8	1d	CH ₂ Tos	В	60	2g(57)
9	1d	$2,6-Me_2C_6H_3$	В	5	2h (80)
10	1d	$4-\text{Me}_2\text{NC}_6\text{H}_4$	В	5	2i (90)
11	1d	$4-XC_6H_4^{[c]}$	В	5	2j (61)

 $^{[a]}$ The reactions were performed with a 1 M solution of thioamide, either in refluxing MeCN (method A) or in CH₂Cl₂ at room temp. (method B) and with a large excess of isocyanide (2 equiv., except for entries 8 and 11:1.5 equiv.). The specified times were required for the full conversion of the starting thioamides and the progress of the reaction was monitored by 1 H NMR spectroscopy. $^{[b]}$ Purified products yields after flash chromatography and/or crystallization. $^{[c]}$ X = 4-NH₂C₆H₄CH₂.

The structures of the compounds **2a-j** were assigned on the basis of the NMR spectroscopic data and were confirmed by high-resolution mass-spectral studies or satisfactory elemental analyses. All of the aza DTFs **2** were obtained as mixtures of *syn* and *anti* geometrical isomers with respect to the exocyclic C-N double bond (ratio about 50:50). Thus, the ¹H and ¹³C NMR spectra exhibit two series of signals at room temperature (cf. Table 2 and Experimental Section). A higher temperature measurement (60 °C) reveals only one series of resonances for **2e** according to the average of the corresponding signals, which suggests a rapid *syn-anti* isomerization.

Although this type of heterocyclization can be classified as a [4 + 1] cycloaddition reaction, it probably proceeds

stepwise via a transient zwitterionic nitrilium intermediate and a spontaneous ring-closure second step according to a previously assumed process.^[6] The mechanism illustrated by Scheme 2 is consistent with the accelerative effect of an electron-attracting group R¹.

The electrochemical reduction of carbon disulfide has been studied by several research groups and a variety of products or intermediates have been reported.[18,19] However, the stoichiometry in Scheme 3 can be realized under accurate conditions, in order to avoid further reduction^[20] to trithiocarbonate (CS₃²⁻) and 1,3-dithiole-2-thione-4,5dithiolate $(C_3S_5^{2-}, DMIT)$. Thus, the tetrathioxalate 3 (C₂S₄²⁻) was obtained in large quantities by reduction of CS₂ at a mercury-pool cathode (-1.5 V vs. Ag/AgCl) in acetonitrile solution saturated with NEt₄Br.^[18,21] Treatment of the dianion 3 with methyl iodide was shown to furnish a great number of alkylated sulfur derivatives besides the Me₂C₂S₄ 4.^[22] Surprisingly, we have found that the methylation of 3 at low temperature, in the presence of tert-butyl isocyanide as the trapping reagent, produces the bis(methylthio)-2-imino-1,3-dithiole 5 in a satisfactory yield (Scheme 3). Such an approach opens an unprecedented route from CS2 to new aza DTFs substituted by two alkylthio groups that are not easily accessible by other methods.[6]

The stability of aza DTFs lies within the nature of the substituents. The dithioles 2a,b were slowly hydrolyzed upon exposure to atmospheric moisture at room temperature. This reaction results in a ring-opening to give the dithiocarbamates 6a,b (Figure 1). In contrast, the other cycloadducts 2 and 5 can be stored for several weeks without any alteration.

Reaction of α -Thioxothioamide 1d with Di and Triisocyanides

The efficiency of the dithiabutadiene 1d, which bears a 4nitrophenyl group, to incorporate diverse isocyanides encouraged us to explore its behaviour in the presence of the bi and tridentate species 7 and 8 as shown in Figures 2 and 3. Representative results of this investigation are summarized in Table 3. Two compounds could be isolated from the 4,4'-diisocyanodiphenylmethane 7a, in yields which were highly dependent upon the excess of this reagent. The use of 7a in a twofold excess resulted in the formation of the 1:1 adduct 9 as the major product and the 1:2 adduct 10a in only poor yield (entry 1). The formation of 10a as the major product was favoured by the use of a large excess of the thioxothioamide 1d (entry 2). In other cases, the reactions proceeded smoothly at room temperature with stoichiometric quantities of diisocyanides 7b-g (or slight excess) to give the N,N'-bis[1,3-dithiol]-2-ylidene diamino derivatives 10b-g in nearly quantitative yields. The 1,2-diisocyanobenzene 7e proved only to be rather unstable and difficult to handle and we have less satisfactory yields for 10e than for 10d (cf. the entries 6 and 7). Similarly, difficulties were encountered in the purification of the tricycloadduct 11 as a result of which the yield in Table 3 is lowered (entry 5). The use of ethylene tetrathiolate 3 in the presence of

Table 2. NMR chemical shifts and multiplicities for main carbon atoms of aza DTFS 2, 9[a][b]

	C-2	C-4	$C-5$ $(^{3}J = 3.8-4.2)$	$N(CH_3)_2$ ($^1J = 136$)	=N-C[c]	$C_{\text{arom}}^{\text{[d]}}$ (${}^{3}J = 7.9 - 8.3$)
2a	152.1, 153.1	140.0, 140.4	119.1, 120.7	44.6, 44.7	57.5, 57.6	131.8, 132.7
2b	(s) 156.5, 156.9 (d, ${}^{3}J = 9.8$)	(m) 139.8, 139.9 (m)	(t) 118.4, 120.1 (t)	(qq) 44.7 (qq)	(m) 58.2, 59.8 (dm, ${}^{1}J = 131$)	(t) 132.1, 132.8 (t)
2c	150.1, 150.7 (s)	138.1, 138.5 (m)	118.2, 118.7 (br)	43.1, 43.4	56.8, 56.9 (m)	131.8, 132.4 (m)
2d	150.2, 151.2	139.9, 140.2	116.6, 118.2	(qq) 43.6, 43.7	56.6, 56.7	129.3, 130.2
2 e	(s) 150.2, 151.2 (s)	(m) 145.2, 145.4 (m)	(t) 114.7, 116.8 (t)	(qq) 45.0, 45.2 (qq)	(m) 53.8, 58.4 (m)	(t) 139.1, 140.0 (t)
2f	$ \begin{array}{l} (3) \\ 154.0, 153.4 \\ (d, {}^{3}J = 9.8) \end{array} $	143.1, 143.7 (m)	(t) 112.4, 114.5 (t)	43.6, 43.7 (qq)	$57.5, 59.1$ (dm, ${}^{1}J = 131$)	137.8, 138.5 (t)
2 g	167.5, 167.6 (t, ${}^{3}J = 8.7$)	144.1, 145.6 (m)	112.7, 116.5 (t)	44.7 (qq)	76.3, 77.5 (t, ${}^{1}J = 146$)	138.1, 138.7 (t)
2h	160.8 (br)	145.2 (m)	115.3 (br)	45.1 (qq)	149.5 (br)	139.4 (br)
2i	156.5, 157.1 (s)	144.3, 147.7 (m)	113.6, 115.3 (t)	40.7, 44.6, 44.7 (qq)	$ \begin{array}{l} (31) \\ 140.1, 140.8 \\ (t, {}^{3}J = 8.4) \end{array} $	138.7, 139.4 (t)
2j ^[e]	159.9, 160.5	144.4, 144.9	113.8, 115.5	44.7, 44.9	148.6, 149.2	138.7, 139.2
9 ^[f]	(s) 160.6, 161.2 (s)	(m) 154.6, 155.2 (m)	(t) 114.0, 115.8 (t)	(qq) 45.0, 45.1 (qq)	$ (t, {}^{3}J = 8.7) 149.4, 150.1 (t, {}^{3}J = 8.9) $	(t) 138.9, 139.5 (t)

 $^{[a]}$ δ (ppm) and J (Hz) in CDCl₃ solutions at 50.3 MHz except for **2a,b,j** (75.5 MHz). $^{[b]}$ The endocyclic carbon atoms are numbered in such a way that the dimethylamino group is at C-4. $^{[c]}$ Exocyclic carbon on the imino nitrogen atom. $^{[d]}$ Quaternary carbon atom of the aromatic on the 5 position. $^{[c]}$ Other selected value: $\delta = 40.7$ (tm, $^1J = 127$ Hz). $^{[f]}$ Other selected values: $\delta = 48.7$ (tm, $^1J = 127$ Hz), 171.4 (br).

$$\begin{array}{c}
R^{1} \\ S \\ N = N - R^{2}
\end{array}$$

$$\begin{array}{c}
R^{1} \\ S - C : R \\ Me_{2}N \\ S - R^{2}
\end{array}$$

$$\begin{array}{c}
R^{1} \\ Me_{2}N \\ S - R^{2}
\end{array}$$

$$\begin{array}{c}
R^{1} \\ Me_{2}N \\ S - R^{2}
\end{array}$$

Scheme 2. Postulated mechanism for the formation of aza DTFs

Scheme 3. Formation and trapping of dimethyl tetrathiooxalate

Ph
$$NHR^2$$
 6a $R^2 = tBu$
 Me_2N 6b $R^2 = tPr$

Figure 1. Hydrolysis products

MeI and diisocyanide 7a or 7e, as described above for *tert*-butyl isocyanide, generated only an intractable mixture of several products.

We especially emphasize the value of using the conjugated diisocyanides 7d-g. The reactions provide a convenient one-step synthesis of new symmetrical, highly conjugated bis(1,3-dithiole) compounds 10d-g (Table 3, entries 6-9). The two push-pull polarized heterocycles are attached through the imines nitrogen's by a chain that incorporates a phenyl, biphenyl or azobiphenyl moiety. Products 10d-g can be viewed as azavinylogues of the TTF derivatives. Only a few examples of similar imino extended TTFs have been reported in the literature. [8b,8c,17]

NMR studies allow some consideration regarding the number and nature of isomers for the bis(1,3-dithiole) de-

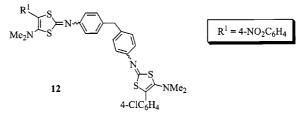


Figure 2. Polyisocyanides, poly-(aza DTFs) and extended TTFs

rivatives 10. Theoretically, the double cycloaddition can produce three isomeric species corresponding to the possible (E) and (Z) configurations of the two exocyclic C=N bonds. Such isomers: (EE), (ZZ) and (EZ) equivalent to (ZE) might be found in the statistical ratio 25:25:50. Thus, four series of signals might be observed for the dithiole endgroups with nearly equal intensities.

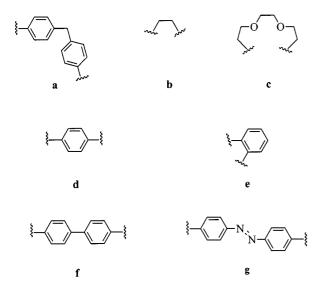


Figure 3. Structures $\mathbf{a} - \mathbf{g}$ for the linking group \mathbf{Y}

Generally, the ¹H and ¹³C NMR spectra of the compounds 10 exhibited only two sets of slightly broad signals of the same intensities at room temperature. This is in accordance with the presence of (E) and (Z) species for one dithiole moiety (cf. Table 4 and Experimental Section). No significant difference was found between the isomer (EE) and part (E) of (EZ) and between the isomer (ZZ) and part (Z) of (EZ). High and low temperature measurements showed important spectral modifications. Between 55 °C and 75 °C, a single series of signals was observed for all of the extended TTFs 10d-g, which is due to a fast (E)-(Z)isomerization. At low temperatures (-10 °C or -55 °C), this equilibrium became slow and four series of well-resolved protons signals were observed (see the Experimental Section). Similar evidence for the formation of three isomers was found in the case of 10b at -10 °C.

Table 3. Reactions of the $\alpha\text{-thioxothioamide }1d$ with di and triisocyanides $^{[a]}$

Entr		le Isocyanid	e/ 1d Time ^[b] (h)	Products (yield %)[c]
1	7a	2	5	9 (46); 10a (28)
2	7a	0.6	8	9 (14); 10a (61)
3	7b	0.6	15	10b (85)
4	7c	0.6	7	10c (76)
5	8	0.34	10	11 (60)
6	7d	0.52	15	10d (82)
7	7e	0.6	15	10e (70)
8	7f	0.55	15	10f (80)
9	7g	0.6	15	10g (79)

 $^{[a]}$ The reactions were performed at room temp., starting from a 1 $_{\rm M}$ solution of thioamide 1d in CH $_{\rm 2}$ Cl $_{\rm 2}$ (method B). – $^{[b]}$ Times required for the complete conversion of the starting material 1d. – $^{[c]}$ Yields represent isolated and purified products after flash chromatography or crystallization.

Preparation of Unsymmetrical Bis(1,3-dithiole) Derivatives

Considering the possibility of obtaining the highly functionalized monocycloadducts **2j** and **9** in adequate yields, we thought that it would be interesting to extend the scope of our method by using them as starting materials in similar reactions. The isocyanide **9** was treated with a twofold excess of the thioxothioamide **1c** to give the compound **12** in 47% yield (method A). According to a known procedure, [8b] the reaction of the amine **2j** with a 2-piperidino-1,3-dithiolium salt resulted in the preparation of another unsymmetrical molecule **13** (Scheme 4).

Electrochemical Oxidation Behaviour

Some of the compounds (2 and 10) were examined by cyclic voltammetry (CV). Measurements were carried out in CH₂Cl₂ or CH₃CN solutions in order to achieve the greatest solubility of the substrates (Table 5). Imino extended

Table 4. NMR chemical shifts and multiplicities for main carbon atoms of bis- and tris-(1,3-dithiole) derivatives 10-12^{[a][b]}

	C-2	C-4	$C-5 (^3J = 4.2 - 4.5)$	$N(CH_3)_2$ ($^1J = 136$)	$=N-C^{[c]}$	$C_{\text{arom}}^{[d]}$ $(^{3}J = 8 - 8.4)$
10a ^[e]	160.3,	145.2,	114.2,	45.1,	149.2, 140.8 (t. 3 I = 0)	139.0, 139.6 (t)
10b	159.2, 159.3, 159.7, 159.8, (t, ${}^{3}J = 8.5$)	144.7, 144.8,	110.1 (t) 114.0, 114.1,	45.2 (qq) 45.1, 45.2 (qq)	149.8 (t, ${}^{3}J = 9$) 57.1, 58.5, 58.6 (tt, ${}^{1}J = 136$, ${}^{3}J = 4$)	139.0 (t) 139.1, 139.7 (t)
$10c^{[f]}$	158.4, 158.8 (t, ${}^{3}J = 8$)		113.5, 116.3 (t)	44.7,	56.5, 58.0 (t, br, ${}^{1}J = 133$)	138.7, 139.4 (t)
10e	161.4, 161.9 (s)	144.7,	114.2, 115.8 (br)	44.7 (qq)	142.2, 142.7 (m)	138.7, 139.2 (m)
10e ^[g]	161.1 (s)	144.7 (m)	115.5 (br)	44.6 (qq)	142.4 (m)	139.0 (m)
10f	160.4, 161.0 (s)	144.3, 144.9 (m)	114.0, 115.9 (t)	44.7, 44.8 (qq)	$149.8, 150.5 (t, {}^{3}J = 8.3)$	138.6, 139.1 (t)
10g	161.5, 161.8 (br)	144.0, 145.0 (m)	114.0, 115.9 (br)	44.8 (qq)	152.9, 153.5 (br)	138.4, 139.0 (br)
$10g^{[h]}$	163.1, 163.5 (s)	145.0, 145.5 (m)	112.9, 115.3 (t)	45.2, 45.3 (qq)	153.1, 153.8 (t, ${}^{3}J = 8.3$)	138.6, 139.2 (t)
11 ^[i]	157.6,	144.3,	113.8,	44.8 (qq)	55.6.	138.7.
12 ^[j]	158.0 (br) 159.8, 160.4, 161.3, 161.9 (s)		116.3 (br) 114.0, 115.8, 117.3, 119.0 (t)	44.6, 44.7,	$57.0 \text{ (t, } ^{1}J = 133)$ 148.7, 149.0, $149.4, 149.6 \text{ (t, } ^{3}J = 8.1)$	130.3, 130.9 (screened
	, (*)		, (•)	(11)	, (*) * **-)	, (*)

[[]a] δ (ppm) and J (Hz) in CDCl₃ solutions at 50.3 MHz except for 10e-g, 11, 12 (75.5 MHz). - [b] The endocyclic carbon atoms are numbered in such a way that the dimethylamino group is at C-4. - [c] Exocyclic carbon on the imino nitrogen atom. - [d] Quaternary carbon atom of the aromatic on the 5 position. - [e] Other selected value: $\delta = 41.4$ (tm, $^1J = 127$ Hz). - [f] Other selected values: $\delta = 70.6$, 70.7 (t, br, $^1J = 140$ Hz). - [g] At 55 °C. - [h] At -55 °C. - [i] Other selected values: $\delta = 54.5$, 54.6 (t, br, $^1J = 133$ Hz). - [ii] Other selected value: $\delta = 41.0$ (tm, $^1J = 131$ Hz).

Scheme 4. Another preparation of a bis(1,3-dithiole) derivative

TTFs 10e,g display a single, quasi-reversible system, which is similar to a two-electron transfer ($\Delta E = 0.05 \text{ V}$), as previously reported for structurally related compounds. [8b] In the cases of other studied aza DTFs and TTFs, the number of electrons involved in the process is difficult to assess owing to the higher values of $\Delta E (\geq 0.06 \text{ V})$. The first of the two reversible waves, which was observed in the cyclic voltammogram of 2i, presumably reflects the oxidation of the aromatic substituent R^2 (4-dimethylaminophenyl group).

Table 5. Cyclic voltammetry data for some aza DTFs 2, bis(1,3-dithiole) derivative 10a and imino extended TTFs 10d-g

Compound	$E_{ m anodic}$	$E_{ m cathodic}$	ΔE
2g[a]	0.93	0.86	0.07
2g ^[a] 2h ^[a]	0.86	0.80	0.06
2i ^[a]	0.66	0.60	0.06
	0.78	0.72	0.06
10a ^[b]	0.82	0.76	0.06
10d ^[b]	0.93	0.85	0.08
10e ^[b]	0.85	0.80	0.05
10f ^[b]	0.93	0.86	0.07
$10g^{[b]}$	0.88	0.83	0.05

 $^{[a]}$ TBAPF $_6$ 0.5 mol L^{-1} in acetonitrile; 0.1 v s $^{-1};$ V vs. SCE. - $^{[b]}$ TBAPF $_6$ 0.5 mol L^{-1} in dichloromethane; 0.1 v s $^{-1};$ V vs. SCE.

Conclusion

The formal [1+4] cycloaddition reaction of the dithiabutadienes with the isocyanides is a conceptually simple and direct method for the preparation of aza DTFs. We have described the use of this method for the generation of the dithioles 2 and 5, which are not readily accessible by standard procedures. An efficient synthetic strategy for linking several rings by aliphatic or aromatic groups was also developed and bis-, as well as, tris-(dithiole) species and imino extended TTFs were obtained under mild conditions. All of these results further increase the potential of the starting α thioxothioamides 1, which are useful as building blocks in heterocyclic chemistry.

Experimental Section

General: NMR: Bruker ARX 200 spectrometer (200 MHz for ¹H and 50.3 MHz for ¹³C) or Bruker AM 300 WB spectrometer (300 MHz for ¹H and 75.5 MHz for ¹³C) in CDCl₃ (internal standard Me₄Si) at room temperature unless otherwise indicated. – HMRS: Centre Régional de Mesures Physiques de l'Ouest; Varian Mat 311 spectrometer, EI mode using a potential of 70 eV for compounds 2, 6, 9; MS/MS ZabSpec TOF Micromass spectrometer, ionization mode positive LSIMS with CS⁺, matrix *m* NBA for compounds 10–13. – IR: Perkin–Elmer 1420 spectrophotometer; suspensions in nujol. – Elemental analyses: Analytical laboratory CNRS

CV measurements were performed with a Princeton Applied Research 362 potentiostat, using Pt working and counter electrodes, and saturated calomel electrode (SCE) as a reference. The experiments were carried out under nitrogen, in CH_2Cl_2 or CH_3CN , with Bu_4NPF_6 as the supporting electrolyte (0.5 mol L^{-1}). The scan rate was $0.1~V~s^{-1}$.

Starting Materials: The α -thioxothioamides 1 were readily available from the corresponding ketones $R^1C(O)CH_3$ by a previously reported three-step procedure.^[1,2]

Toluene-4-sulfonylmethyl isocyanide and 2,6-dimethylphenyl isocyanide were purchased from Fluka. Other monoisocyanides were synthesized according to the well-known Hofmann carbylamine reaction: treatment of the primary amines with chloroform in CH₂Cl₂/aqueous NaOH system, in the presence of benzyltriethylammonium chloride as phase-transfer catalyst.^[23] *tert*-Butyl isocyanide,^[24] isopropyl isocyanide^[24] and 4-(dimethylamino)phenyl isocyanide^[25] were obtained in excellent yields. The crude product from 4,4'-methylenedianiline (9.9 g, 50 mmol) was a mixture of the diisocyanide 7a (3.8 g, 35% yield) and the monoisocyanide (see below) which were separated by flash chromatography on a Merck 90 alumina column with CH₂Cl₂/hexane (1:1) and then CH₂Cl₂ as the eluents.

The polyisocyanides, except 7c, have already been described in the literature, for example in the following principal references: 4,4'-(7a);^[26,27] diisocyanodiphenylmethane 1,2-diisocyanoethane (**7b**);^[28,29] 1,4-diisocyanobenzene (**7d**);^[26] 1,2-diisocyanobenzene (7e);^[30] 4,4'-diisocyanobiphenyl (7f);^[26,31] 4,4'-diisocyanoazodiphenyl (7g);^[27] tris(2-isocyanoethyl)amine (8).^[29] The 1,2-phenylenediisocyanide 7e is a rather unstable compound that turns brown at room temperature and decomposes within a few hours to give mainly polymeric material. The diisocyanide 7c was conveniently from 2,2'-(ethylenedioxy)bis(ethylamine) (14.8 g, 100 mmol) by the customary phase-transfer procedure^[23] and isolated by flash chromatography on alumina with CH₂Cl₂/Et₂O (1:1) as the eluent.

The orange-coloured ethylene tetrathiolate 3 was accessible and purified as described in the review by Jeroschewski.^[18] - ¹³C{¹H} NMR (H₂O/D₂O, 75.5 MHz): $\delta = 9.4$ (s), 54.7 (t, ¹ $J_{\rm CN} = 2.9$ Hz), 270.2 (s).

4-Amino-4'-isocyanodiphenylmethane: M.p. 105 °C (CH₂Cl₂/hexane) (2.6 g, 25% yield). – IR: $\tilde{v} = 3400 \text{ cm}^{-1}$, 3320 (NH), 2140 (N=C). – ¹H NMR (300 MHz): $\delta = 3.60$ (br, 2 H), 3.85 (s, 2 H), 6.61, 6.92, 7.15, 7.23 (4 d, J = 8.4 Hz, 8 H). – ¹³C NMR (75.5 MHz): $\delta = 40.7$ (tm, ¹J = 127 Hz), 115.2, 115.3, 126.3, 129.5 (4 nonquat. arom. C), 129.7, 129.8, 143.8 (3 m), 144.9 (t, ³J = 8.5 Hz), 163.4 (br). – C₁₄H₁₂N₂ (208.26): calcd. C 80.74, H 5.81, N 13.45; found C 80.51, H 5.63, N 13.39.

3,6-Dioxaoctane-1,8-diisocyanide (7c): B.p. 150 °C/0.045 Torr (Büchi kugelrohr apparatus) (6.05 g, 36% yield). – IR: $\tilde{v}=2133$ cm⁻¹ (N=C). – ¹H NMR (200 MHz): $\delta=3.59$ (m, 4 H), 3.71 (m, 4 H), 3.72 (s, 4 H). – ¹³C NMR (50.3 MHz): $\delta=42.3$ (tt, ¹J=145 Hz, ¹ $J_{\rm CN}=7$ Hz), 69.0 (tm, ¹J=145 Hz), 71.1 (tt, ¹J=142 Hz, ³J=2.7 Hz), 157.5 (t, br, ¹ $J_{\rm CN}=5.4$ Hz). – C₈H₁₂N₂O₂ (168.20): calcd. C 57.13, H 7.19, N 16.66; found C 56.95, H 7.07, N 16.55.

The Reaction of α-Thioxothioamides with Mono- and Polvisocvanides. - General Procedure: A suspension of the thioamide 1 (5 mmol) and the appropriate isocyanide was prepared in 5 mL of dry MeCN (method A) or CH₂Cl₂ (method B). The excess of the isocyanide used, the operating temperature and the reaction time are indicated in Table 1 and 3. The progress of the reaction was monitored by ¹H NMR spectroscopy. A few of the cycloadducts (2i, 10b, 10d, 10f, 10g) precipitated as highly coloured solids from the reaction medium. They were collected by filtration. Otherwise, the solvent was removed under reduced pressure and the residual syrup was triturated with MeOH to give the crystalline materials 2d-f and 10c. In other cases, the iminodithioles were isolated and then purified by flash chromatography on silica gel using diverse eluents: petroleum ether/diethyl ether (2:1) for 2a-c; CH₂ Cl₂ then Et₂O for **2g**,**j** and **10e**; CH₂Cl₂/hexane (2:1) for **2h**; CH₂Cl₂ then MeOH for 11. The mixture obtained from the diisocyanide 7a (Table 3, entries 1,2) was treated under similar conditions. The SiO₂ column was first eluted with CH₂Cl₂ to collect the monocycloadduct 9 and then eluted with Et₂O to give the bis(1,3-dithiole) 10a. - Yields and selected ¹³C NMR spectroscopic data: see Table 1-4.

tert-Butyl-*N*-[4-(Dimethylamino)-5-phenyl-1,3-dithiol-2-ylidene]-amine (2a): 0.99 g, 3.4 mmol. — M.p. 58 °C (petroleum ether). — 1 H NMR (300 MHz) : δ = 1.34, 1.35 (2 s, 9 H), 2.55 (s, 6 H), 7.23—7.55 (m, 5 H). — MS: calcd. for $C_{15}H_{20}N_2S_2$ m/z = 292.1068 [M⁺•]; found 292.1061 — $C_{15}H_{20}N_2S_2$ (292.46): calcd. C 61.60, H 6.89, N 9.58, S 21.92; found C 61.45, H 6.99, N 9.70, S 21.65.

N-[4-(Dimethylamino)-5-phenyl-1,3-dithiol-2-ylidene]isopropylamine (2b): 0.96 g, 3.45 mmol. – M.p. 56 °C (petroleum ether). – 1 H NMR (300 MHz): δ = 1.21, 1.23 (2 d, J = 6.2 Hz, 6 H), 2.55, 2.57 (2 s, 6 H), 3.29 (m, 1 H), 7.23–7.54 (m, 5 H). – MS: calcd. for $C_{14}H_{18}N_2S_2$ m/z = 278.0911 [M^{+•}]; found 278.0903.

tert-Butyl-*N*-[4-(Dimethylamino)-5-(2-thienyl)-1,3-dithiol-2-ylidene]-amine (2c): 0.85 g, 2.85 mmol. — M.p. 62 °C (petroleum ether). — 1 H NMR (200 MHz) : δ = 1.26 1.28 (2 s, 9 H), 2.52, 2.53 (2 s, 6 H), 6.85 (m, 2 H), 7.13 (d, J = 3.5 Hz, 1 H). — MS: calcd. for $C_{13}H_{18}N_2S_3$ m/z = 298.0632 [M^{+•}]; found 298.0627.

tert-Butyl-*N*-[5-(4-Chlorophenyl)-4-(dimethylamino)-1,3-dithiol-2-ylidenelamine (2d): 1.22 g, 3.75 mmol. — M.p. 75 °C (MeOH) — 1 H NMR (200 MHz): δ = 1.34 (s, 9 H), 2.57 (s, 6 H), 7.29, 7.48 (2 d, J=8.7 Hz, 4 H). — $C_{15}H_{19}ClN_2S_2$ (326.90): calcd. C 55.11, H 5.86, N 8.57, Cl 10.85; found C 55.14, H 5.82, N 8.60, Cl 10.88.

tert-Butyl-*N*-[4-(Dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]amine (2e): 1.42 g, 4.2 mmol. – M.p. 94 °C (MeOH). – 1 H NMR (300 MHz): δ = 1.35 (s, 9 H), 2.64, 2.65 (2 s, 6 H), 7.69, 7.70, 8.18, 8.19 (4 d, J=8.9 Hz, 4 H); at 60 °C: δ = 1.36 (s, 9H), 2.65 (s, 6 H), 7.69, 8.18 (2 d, J=8.9 Hz, 4 H). – $C_{15}H_{19}N_3O_2S_2$ (337.45): calcd. C 53.39, H 5.68, N 12.45, S 19.00; found C 53.28, H 5.65, N 12.21, S 19.16.

N-[4-(Dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-isopropylamine (2f): 1.45 g, 4.5 mmol. – M.p. 95 °C (CH₂Cl₂/petroleum ether). – 1 H NMR (200 MHz): δ = 1.14, 1.15 (2 d, J =

6.2 Hz, 6 H), 2.55, 2.58 (2 s, 6 H), 3.22 (m, 1 H), 7.61, 7.63, 8.10, 8.11 (4 d, J = 9 Hz, 4 H). $-C_{14}H_{17}N_3O_2S_2$ (323.43): calcd. C 51.99, H 5.30, N 12.99, S 19.83; found C 52.29, H 5.19, N 13.01, S 20.03.

N-[4-(Dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-tosylmethylamine (2g): 1.28 g, 2.85 mmol. — M.p. 110 °C (CH₂Cl₂/Et₂O). — ¹H NMR (200 MHz): δ = 2.45 (s, 3 H), 2.62, 2.67 (2 s, 6 H), 4.59, 4.64 (2 s, 2 H), 7.37, 7.85 (2 d, J = 8.3 Hz, 4 H), 7.63, 7.68, 8.20, 8.21 (4 d, J = 9 Hz, 4 H). — MS: calcd. for C₁₉H₁₉N₃O₄S₃ m/z = 449.0538 [M⁺•]; found 449.0543. — C₁₉H₁₉N₃O₄S₃ (449.56): calcd. C 50.76, H 4.26, N 9.35; found C 50.34, H 4.24, N 8.95.

2,6-Dimethyl-*N*-**[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]aniline (2h):** 1.54 g, 4 mmol. — M.p. 120 °C (MeOH). — $^1\mathrm{H}$ NMR (200 MHz): $\delta=2.19$ (s, 6 H), 2.58, 2.72 (br, 6 H), 7.05 (m, 3 H), 7.68, 8.19 (br, 4 H). — MS: calcd. for $C_{19}H_{19}N_3O_2S_2$ $\mathit{mlz}=385.0919$ [M+*]; found 385.0932. — $C_{19}H_{19}N_3O_2S_2$ (385.50): calcd. C 59.20, H 4.97, N 10.90, S 16.63; found C 58.97, H 5.03, N 11.04, S 16.36.

4-(Dimethylamino)-*N***-[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]aniline** (2i): 1.8 g, 4.5 mmol. — M.p. 165 °C (MeOH/CH₂Cl₂). — ¹H NMR (200 MHz): δ = 2.60, 2.69, 2.95, 2.96 (4 s, 12 H), 6.73, 6.75, 6.99, 7.01, 7.64, 7.73, 8.14, 8.19 (8 d, J = 8.9 Hz, 8 H). — MS: calcd. for C₁₉H₂₀N₄O₂S₂ m/z = 400.1028 [M⁺•]; found 400.1048. — C₁₉H₂₀N₄O₂S₂ (400.51): calcd. C 56.98, H 5.03, N 13.99, S 16.01; found C 57.09, H 4.99, N 14.09, S 16.48.

4-(4-Aminobenzyl)-*N*-[**4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene|aniline (2j):** 1.41 g, 3.05 mmol. – M p. 135 °C (MeOH). – ¹H NMR (200 MHz): δ = 2.58, 2.68 (2 s, 6 H), 3.52 (br, 2 H), 3.86 (s, 2 H), 6.61–7.21 (m, 8 H), 7.61, 7.72, 8.14, 8.20 (4 d, J = 8.9 Hz, 4 H). – MS: calcd. for C₂₄H₂₂N₄O₂S₂ m/z = 462.1184 [M⁺]; found 462.1153. – C₂₄H₂₂N₄O₂S₂ (462.58): calcd. C 62.32, H 4.79, N 12.11, S 13.86; found C 62.04, H 4.90, N 12.20, S 13.90.

N-[4-(Dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-4-(4-isocyanobenzyl)aniline (9): 1.08 g, 2.3 mmol. — M.p. 128 °C (CH₂Cl₂/petroleum ether). — IR: $\tilde{v}=2120~\text{cm}^{-1}$ (N=C). — ^1H NMR (200 MHz): $\delta=2.60$, 2.70 (2 s, 6 H), 3.98, 3.99 (2 s, 2 H), 6.95−7.30 (m, 8 H), 7.62, 7.73, 8.15, 8.21 (4 d, J=8.9~Hz, 4 H). — MS: calcd. for C₂₅H₂₀N₄O₂S₂ $m/z=472.1026~\text{[M}^{\bullet\bullet}]$; found 472.1027. — C₂₅H₂₀N₄O₂S₂ (472.58): calcd. C 63.54, H 4.27, N 11.86, S 13.57; found C 63.14, H 4.07, N 11.82, S 13.66.

N,*N'*-Bis[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-diphenylmethane-4,4'-diamine (10a): 1.11 g, 1.53 mmol. — M.p. 220 °C (CH₂Cl₂/petroleum ether). — 1 H NMR (200 MHz): δ = 2.60, 2.70 (2 s, 12 H), 3.97 (br, 2 H), 6.98, 7.23 (2 m, 8 H), 7.63, 7.74, 8.15, 8.22 (4 d, J = 8.8 Hz, 8 H). — MS: calcd. for $C_{35}H_{31}N_{6}O_{4}S_{4}$ m/z = 727.1290 [M + H⁺]; found 727.1288. — $C_{35}H_{30}N_{6}O_{4}S_{4}$ (726.90): calcd. C 57.83, H 4.16, N 11.56, O 8.80, S 17.64; found C 57.92. H 4.35, N 11.35, O 8.78, S 17.02.

N,*N'*-Bis[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-ethane-1,2-diamine (10b): 1.25 g, 2.12 mmol. — M.p. 201 °C (MeCN). — IR: $\tilde{v} = 1565$ cm⁻¹ (N=C). — ¹H NMR (300 MHz): $\delta = 2.64$, 2.67 (2 s, 12 H), 3.46—3.58 (m, 4 H), 7.70, 7.72, 8.20, 8.21 (4 d, J = 9 Hz, 8 H); at -10 °C: $\delta = 2.641$, 2.642 (2 s, 6 H), 2.68 (br, 6 H), 3.45—3.55 (m, 4 H), 7.70, 7.71 (2 d, J = 9 Hz, 2 H), 7.73, 8.21, 8.22 (3 d, J = 9 Hz, 6 H). — MS: calcd. for C₂₄H₂₅N₆O₄S₄ m/z = 589.0820 [M + H⁺]; found 589.0824. — C₂₄H₂₄N₆O₄S₄ (588.73): calcd. C 48.96, H 4.11, N 14.27, S 21.78; found C 49.28, H 3.96, N 14.17, S 21.86.

N,*N'*-Bis[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-3,6-dioxaoctane-1,8-diamine (10c): 1.28 g, 1.9 mmol. — M.p. 160 °C (MeOH). — 1 H NMR (200 MHz): δ = 2.64, 2.67 (2 s, 12 H), 3.38 (m, 4 H), 3.72 (s, 4 H), 3.82 (t, J = 5.8 Hz, 4 H), 7.69, 7.72 (2 d, J = 8.6 Hz, 4 H), 8.20 (d, J = 8.5 Hz, 4 H). — MS: calcd. for $C_{28}H_{33}N_6O_6S_4$ m/z = 677.1344 [M + H⁺]; found 677.1349. — $C_{28}H_{32}N_6O_6S_4$ (676.84): calcd. C 49.69, H 4.77, N 12.42, S 18.95; found C 49.64, H 4.84, N 12.56, S 18.91.

N,*N'*-Bis|4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-benzene-1,4-diamine (10d): 1.30 g, 2.04 mmol. – M.p. 258 °C (CH₂Cl₂). – ¹H NMR (300 MHz): δ = 2.63, 2.72 (2 s, 12 H), 7.08–7.11 (br, 4 H), 7.66, 7.76, 8.19, 8.24 (4 d, *J* = 8.9 Hz, 8 H); at –10 °C: δ = 2.62, 2.63, 2.72, 2.73 (4 s, 12 H), 7.08, 7.10, 7.12 (3 s, 4 H), 7.67, 7.675, 7.765, 7.77, 8.185, 8.19, 8.25, 8.255 (8 d, *J* = 9 Hz, 8 H); at 75 °C (C₆D₆): δ = 2.07 (br, 12 H), 7.24 (s, 4 H), 7.16, 7.78 (2 d, *J* = 9 Hz, 8 H). – MS: calcd. for C₂₈H₂₅N₆O₄S₄ *m/z* = 637.0820 [M + H⁺]; found 637.0824.

N,*N'*-Bis|4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-benzene-1,2-diamine (10e): 1.11 g, 1.75 mmol. — M.p. 218 °C (acetone/CH₂Cl₂). — ¹H NMR (300 MHz): δ = 2.59, 2.69 (br, 12 H), 7.08 (m, 2 H), 7.19 (br, 2 H), 7.63, 7.73, 8.14, 8.20 (4 d, br, *J* = 7.5 Hz, 8 H); at −50 °C (CD₂Cl₂): δ = 2.51, 2.54, 2.65, 2.66 (4 s, 12 H), 7.04, 7.17 (2 m, 4 H), 7.58, 7.60, 7.715, 7.72, 8.07, 8.10, 8.16, 8.17 (8 d, *J* = 8.8 Hz, 8 H); at 60 °C (C₆D₆): δ = 2.02 (s, 12 H), 7.06, 7.19 (2 dd, *J* = 5.9 and 3.5 Hz, 4 H), 7.10 (d, br, *J* = 8.9 Hz, 4 H), 7.75 (d, *J* = 9 Hz, 4 H). — MS: calcd. for C₂₈H₂₅N₆O₄S₄ *m/z* = 637.0820 [M + H⁺]; found 637.0826. — C₂₈H₂₄N₆O₄S₄ (636.78): calcd. C 52.81, H 3.80, N 13.20, S 20.14; found C 52.75, H 3.64, N 12.94, S 20.40.

N,*N'*-Bis[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-biphenyl-4,4'-diamine (10f): 1.42 g, 2 mmol. — M.p. 268 °C (CH₂Cl₂). — ¹H NMR (300 MHz): δ = 2.62, 2.72 (2 s, 12 H), 7.12, 7.65 (2 m, 8 H), 7.66, 7.76, 8.17, 8.24 (4 d, *J* = 8.9 Hz, 8 H); at —10 °C: δ = 2.62, 2.625, 2.73, 2.735 (4 s, 12 H), 7.13, 7.65 (2 m, 8 H), 7.665, 7.67, 7.77, 7.775, 8.175, 8.18, 8.25, 8.255 (8 d, *J* = 9 Hz, 8 H); at 75 °C (C₆D₆): δ = 2.09 (s, 12 H), 7.16, 7.79 (2 d, *J* = 9 Hz, 8 H), 7.21, 7.53 (2 d, *J* = 8.8 Hz, 8 H). — MS: calcd. for C₃₄H₂₉N₆O₄S₄ *m/z* = 713.1133 [M + H⁺]; found 713.1136. — C₃₄H₂₈N₆O₄S₄ (712.87): calcd. C 57.29, H 3.96, N 11.79, S 17.99; found C 56.73, H 3.97, N 11.76, S 17.95.

N,N'-Bis[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene]-azobenzene-4,4'-diamine (10g): 1.46 g, 1.97 mmol. — M.p. 269 °C (toluene). — 1 H NMR (300 MHz): δ = 2.62, 2.73 (br, 12 H), 7.18, 7.97 (2 d, J = 8.7 Hz, 8 H), 7.65, 7.75, 8.18, 8.25 (4 d, br, J = 8.7 Hz, 8 H); at -55 °C: δ = 2.63, 2.76 (2 s, 12 H), 7.20, 7.97 (2 m, 8 H), 7.67, 7.79, 8.20, 8.27 (4 d, J = 9 Hz, 8 H); at 57 °C: δ = 2.68 (br, 12 H), 7.19, 7.97 (2 d, J = 8.7 Hz, 8 H), 7.70, 8.21 (2 d, br, J = 8.7 Hz, 8 H). — MS: calcd. for $C_{34}H_{29}N_8O_4S_4$ m/z = 741.1195 [M + H+]; found 741.1200. — $C_{34}H_{28}N_8O_4S_4$ (740.89): calcd. C 55.12, H 3.81, N 15.12, S 17.31; found C 55.23, H 3.79, N 14.75, S 17.42.

Tris-(2-aminoethyl)-*N*,*N'*,*N''*-tris-[4-(dimethylamino)-5-(4-nitrophenyl)-1,3-dithiol-2-ylidene|amine (11): Amorphous hemisolid (0.94 g, 1 mmol.) - ¹H NMR (300 MHz): δ = 2.61, 2.62, 2.64, 2.66, 2.67, 2.68 (6 s, 18 H), 3.05, 3.37 (2 m, 12 H), 7.66–7.72 (m, 6 H), 8.14–8.21 (m, 6 H). - MS: calcd. for $C_{39}H_{43}N_{10}O_6S_6$ mlz = 939.1691 [M + H⁺]; found 939.1729.

Preparation of the Unsymmetrical Bis(1,3-dithiole) Derivatives: A mixture of α -thioxothioamide 1c (0.97 g, 4 mmol) and isocyanide 9 (0.88 g, 1.86 mmol) in anhydrous MeCN (10 mL) was refluxed for

70 h. Concentration of the crude solution left a reddish residue, which was purified by flash-chromatography on Merck silica gel 60. The column was first eluted with CH_2Cl_2 to remove the starting products and then eluted with diethyl ether to furnish the bis(aza DTF) **12** as an amorphous material: 0.62 g, 0.87 mmol. - ¹H NMR (300 MHz): δ = 2.53, 2.60, 2.63, 2.70 (4 s, 12 H), 3.97 (m, 2 H), 6.99 (m, 4 H), 7.21 (m, 6 H), 7.34, 7.52, 7.64, 7.74, 8.16, 8.22 (6 d, J = 8.8 Hz, 6 H). - ¹³C NMR: see Table 4. - MS: calcd. for $C_{35}H_{31}ClN_5O_2S_4$ mlz = 716.1049 [M + H⁺]; found 716.1041.

The amine 2i (0.7 g, 1.5 mmol) was added to a solution of 5methyl-4-(methylthio)-2-piperidino-1,3-dithiolium iodide^[8b] (0.7 g, 1.87 mmol) in anhydrous pyridine (10 mL). The mixture was refluxed for 1 h. After evaporation of the solvent, the crude product was treated with CH2Cl2, washed with H2O and dried with Na₂SO₄. The residue was purified by column chromatography on silica gel with CH₂Cl₂ and then Et₂O as the eluents. This afforded compound 13 as an amorphous hemisolid (0.7 g, 75% yield). – ¹H NMR (200 MHz): $\delta = 2.16$, 2.24 (2 s, 3 H), 2.25, 2.33 (2 s, 3 H), 2.57, 2.67 (2 s, 6 H), 3.93, 3.94 (2 s, 2 H), 6.97 (m, 4 H), 7.20 (m, 4 H), 7.61, 7.72, 8.12, 8.19 (4 d, J = 9 Hz, 4 H). $- {}^{13}$ C NMR (50.3 MHz): $\delta = 14.7$, 15.5 (2 q, ${}^{1}J = 131 \text{ Hz}$), 19.3, 19.4 (2 q, ${}^{1}J =$ 141 Hz), 40.9 (tm, ${}^{1}J = 127$ Hz), 44.6, 44.7 (2 qq, ${}^{1}J = 136$ Hz, $^{3}J = 4.2 \text{ Hz}$), 113.4, 115.2 (2 t, $^{3}J = 4 \text{ Hz}$), 119.0 (m), 120.1, 120.2, 123.7, 123.8, 128.6, 128.8, 129.9 (non-quat. arom. C), 132.2, 132.7 (2 q, ${}^{2}J = 7.1 \text{ Hz}$), 137.5, 137.7 (2 m), 138.5, 139.1 (2 t, ${}^{3}J =$ 8.2 Hz), 144.3, 144.7 (2 m), 145.8, 146.1 (2 m), 148.6, 149.2, 149.3 $(3 \text{ t}, {}^{3}J = 8.8 \text{ Hz}), 159.6, 160.3, 164.0, 164.2 (4 \text{ s}). - \text{MS: calcd. for}$ $C_{29}H_{27}N_4O_2S_5 m/z = 623.0738 [M + H^+];$ found 623.0738.

Trapping of Dimethyl Tetrathiooxalate 4: *tert*-Butyl isocyanide (0.66 g, 8 mmol) was added to a suspension of newly prepared (NEt₄)₂C₂S₄ (3; 1.65 g, 4 mmol) in dry CHCl₃ (50 mL). After cooling to -10 °C, the mixture was treated with MeI (1.14 g, 8 mmol) and maintained at 0 °C for 10 h. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography with petroleum ether and then diethyl ether as the eluents.

N-[4,5-Bis(methylthio)-1,3-dithiol-2-ylidene|*tert*-butylamine (5): reddish oily product (0.58 g, 55% yield). - ¹H NMR (200 MHz): δ = 1.23 (s, 9 H), 2.35, 2.36 (2 s, 6 H). - ¹³C NMR (50.3 MHz): δ = 17.9, 18.1 (2 q, ¹*J* = 141 Hz), 26.6 (qm, ¹*J* = 126 Hz), 57.1 (m), 122.7, 126.4 (2 q, ³*J* = 5.2 Hz), 152.4 (s).

Hydrolysis of the Aza DTFs: A sample of **2a** or **2b** was maintained at room temperature under atmospheric moisture for several days. The dithiocarbamate **6** thus produced was suspended in MeOH and collected by filtration.

(Dimethylcarbamoyl)phenylmethyl N-tert-Butyldithiocarbamate (6a): M.p. 170 °C (CH₂Cl₂/Et₂O). – IR: $\tilde{v} = 3185 \text{ cm}^{-1}$ (NH), 2990 (CH), 1622 (C=O), 1190 (C=S). – ¹H NMR (300 MHz): $\delta = 1.44$ (s, 9 H), 3.00, 3.10 (2 s, 6 H), 5.94 (br, 1 H), 7.27–7.48 (m, 5 H), 8.00 (br, NH). – ¹³C NMR (75.5 MHz): $\delta = 28.0 \text{ (qm, }^{1}J = 128 \text{ Hz})$, 36.5, 37.9 (2 qq, $^{1}J = 139 \text{ Hz}$, $^{3}J = 3.2 \text{ Hz}$), 55.9 (dm, $^{1}J = 140 \text{ Hz}$), 57.4 (m), 128.1, 128.5, 128.9 (3 non-quat. arom. C), 135.3 (m), 170.1 (m), 192.3 (d, $^{3}J = 5.7 \text{ Hz}$). – MS: calcd. for C₁₅H₂₂N₂OS₂ m/z = 310.1173 [M+•]; found 310.1191; calcd. for C₁₆H₁₃NOS m/z = 195.0718 [M – tBuNCS+•]; found 195.0714. – C₁₅H₂₂N₂OS₂ (310.47): calcd. C 58.03, H 7.14, N 9.02, S 20.65; found C 58.16, H 6.92, N 8.99, S 20.58.

(Dimethylcarbamoyl)phenylmethyl *N*-Isopropyldithiocarbamate (6b): M.p. 163 °C (MeOH). – IR: $\tilde{v} = 3173 \text{ cm}^{-1}$ (NH), 2990 (CH), 1612 (C=O), 1155 (C=S). – ¹H NMR (200 MHz): $\delta = 1.18, 1.22$

(2 d, J = 6.2 Hz, 6 H), 3.00, 3.12 (2 s, 6 H), 4.60 (m, 1 H), 6.16 (s, 1 H), 7.25–7.50 (m, 5 H), 8.24 (d, br, NH). – $C_{14}H_{20}N_2OS_2$ (296.45): calcd. C 56.72, H 6.80, N 9.45, S 21.63; found C 56.69, H 6.67, N 9.54, S 21.76.

Acknowledgments

We would like to thank Prof. A. Tallec for his fruitful assistance in cyclic voltammetry interpretation.

- G. Adiwidjaja, H. Günther, J. Voss, Angew. Chem. 1980, 92, 559-560; Angew. Chem. Int. Ed. Engl. 1980, 19, 563-564 and Liebigs Ann. Chem. 1983, 1116-1132.
- ^[2] E. Marchand, G. Morel, *Bull. Soc. Chim. Fr.* **1996**, *133*, 903–912 and **1997**, *134*, 623–634.
- [3] E. Marchand, G. Morel, S. Sinbandhit, Eur. J. Org. Chem. 1999, 1729–1738.
- [4] G. Morel, E. Marchand, A. Foucaud, J. Org. Chem. 1985, 50, 771-778; G. Morel, E. Marchand, A. Foucaud, L. Toupet, J. Org. Chem. 1989, 54, 1185-1191.
- [5] G. Morel, E. Marchand, A. Foucaud, L. Toupet, J. Org. Chem. 1990, 55, 1721–1727.
- [6] K. Hartke, A. Kumar, G. Henssen, J. Quante, T. Kämpchen, Chem. Ber. 1982, 115, 3107–3114; J. Köster, K. Hartke, Sulfur Letters 1983, 1, 199–204.
- [7] G. Scherowsky, J. Weiland, *Liebigs Ann. Chem.* **1974**, 403–411.
- [8] [8a] D. Lorcy, A. Robert, S. Triki, L. Ouahab, P. Robin, E. Chastaing, *Tetrahedron Lett.* 1992, 33, 7341-7344. [8b] D. Lorcy, A. Robert, R. Carlier, A. Tallec, *Bull. Soc. Chim. Fr.* 1994, 131, 774-778. [8c] P. Hascoat, D. Lorcy, A. Robert, K. Boubekeur, P. Batail, R. Carlier, A. Tallec, *J. Chem. Soc., Chem. Commun.* 1995, 1229-1230.
- [9] [9a] J. Nakayama, M. Ochiai, K. Kawada, M. Hoshino, J. Chem. Soc., Perkin Trans. 1 1981, 618-620. [9b] K. Hirai, H. Sugimoto, T. Ishiba, Sulfur Reports 1983, 3, 1-28.
- [10] S. Bittner, A. Moradpour, P. Krief, *Synthesis* **1989**, 132–133.
- [11] M. Guillemet, J. M. Raoul, F. Pellé, A. Robert, M. Baudy-Floc'h, J. Mater. Chem. 1995, 5, 35–39.

- [12] C. Gueden, J. Vialle, Bull. Soc. Chim. Fr. 1973, 1, 270-277.
- ^[13] A. Dibo, M. Stavaux, N. Lozac'h, A. Hordvik, *Acta Chem. Scand.* **1985**, *B39*, 103–112 and references therein.
- [14] E. Fanghänel, K. H. Kühnemund, A. M. Richter, *Synthesis* **1983**, 50-52.
- [15] R. L. N. Harris, H. G. McFadden, Aust. J. Chem. 1984, 37, 2479-2487.
- [16] T. K. Chen, W. T. Flowers, J. Heterocyclic Chem. 1987, 24, 1569-1571.
- [17] C. Maletzko, W. Sundermeyer, H. Pritzkow, H. Irngartinger, U. Huber-Patz, Chem. Ber. 1991, 124, 2025–2031.
- [18] Review: P. Jeroschewski, P. Hansen, Sulfur Reports 1986, 7, 1–37.
- [19] J. G. Breitzer, J. H. Chou, T. B. Rauchfuss, *Inorg. Chem.* 1998, 37, 2080-2082 and references therein.
- [20] Review: N. Svenstrup, J. Becher, Synthesis 1995, 215-235.
- ^[21] J. R. Reynolds, C. A. Jolly, S. Krichene, P. Cassoux, C. Faulmann, *Synth. Met.* **1989**, *31*, 109–126.
- [22] P. Jeroschewski, P. Hansen, Z. Chem. 1982, 22, 223-224.
- W. P. Weber, G. W. Gokel, Tetrahedron Lett. 1972, 1637-1640;
 W. P. Weber, G. W. Gokel, I. K. Ugi, Angew. Chem. 1972, 84, 587-588; Angew. Chem. Int. Ed. Engl. 1972, 11, 530-531.
- [24] I. Ugi, U. Fetzer, U. Eholzer, H. Knupfer, K. Offermann, Angew. Chem. 1965, 77, 492-504; Angew. Chem. Int. Ed. Engl. 1965, 4, 472-484.
- [25] K. Burger, G. Marschke, F. Manz, J. Heterocycl. Chem. 1982, 19, 1315-1317.
- [26] A. Efraty, I. Feinstein, L. Wackerle, A. Goldman, J. Org. Chem. 1980, 45, 4059-4061.
- [27] R. Obrecht, R. Herrmann, I. Ugi, Synthesis 1985, 400-402
- [28] D. Stafforst, U. Schöllkopf, Liebigs Ann. Chem. 1980, 28-36;
 J. A. S. Howell, A. J. Rowan, J. Chem. Soc., Dalton Trans. 1981, 297-301;
 G. Schrumpf, S. Martin, J. Mol. Struct. 1982, 81, 155-165.
- [29] A. C. Ontko, R. J. Angelici, Langmuir 1998, 14, 3071-3078.
- [30] Y. Ito, A. Ohnishi, H. Oshaki, M. Murakami, Synthesis 1988, 714-715.
- [31] J. I. Henderson, S. Feng, G. M. Ferrence, T. Bein, C. P. Kubiak, Inorg. Chim. Acta 1996, 242, 115-124.

Received July 6, 2000 [O00334]